
Package index
-
Collins - Collins data
-
DVTipd - Hypothetical dataset for diagnosis of Deep Vein Thrombosis (DVT)
-
DVTmodels - Risk prediction models for diagnosing Deep Venous Thrombosis (DVT)
-
Daniels - Daniels and Hughes data
-
EuroSCORE - Predictive performance of EuroSCORE II
-
Fibrinogen - Meta-analysis of the association between plasma fibrinogen concentration and the risk of coronary heath disease
-
Framingham - Predictive performance of the Framingham Risk Score in male populations
-
Kertai - Kertai data
-
Roberts - Roberts data
-
Scheidler - Diagnostic accuracy data
-
Tzoulaki - The incremental value of cardiovascular risk factors
-
Zhang - Meta-analysis of the prognostic role of hormone receptors in endometrial cancer
-
acplot() - Plot the autocorrelation of a Bayesian meta-analysis model
-
acplot(<mcmc.list>) - Plot the autocorrelation of a Bayesian meta-analysis model
-
acplot(<uvmeta>) - Plot the autocorrelation of a Bayesian meta-analysis model
-
acplot(<valmeta>) - Plot the autocorrelation of a Bayesian meta-analysis model
-
ccalc() - Calculate the concordance statistic
-
cor2cov() - Convert a correlation matrix into a covariance matrix
-
dplot() - Posterior distribution of estimated model parameters
-
dplot(<mcmc.list>) - Posterior distribution of estimated model parameters
-
dplot(<uvmeta>) - Plot the prior and posterior distribution of a meta-analysis model
-
dplot(<valmeta>) - Plot the prior and posterior distribution of a meta-analysis model
-
fat() - Regression tests for detecting funnel plot asymmetry
-
fitted(<metapred>) - Extract Model Fitted Values
-
forest() - Forest plot
-
forest(<default>) - Forest plot
-
forest(<metapred>) - Forest plot of a metapred fit
-
forest(<mp.cv.val>) - Forest plot of a validation object.
-
gelmanplot() - Gelman-Rubin-Brooks plot
-
gelmanplot(<mcmc.list>) - Gelman-Rubin-Brooks plot
-
gelmanplot(<uvmeta>) - Gelman-Rubin-Brooks plot
-
gelmanplot(<valmeta>) - Gelman-Rubin-Brooks plot
-
gen()generalizability() - Generalizability estimates
-
impact - IMPACT data
-
impute_conditional_mean() - Impute missing values by their conditional mean
-
inv.logit() - Apply the inverse logit tranformation
-
is_metapred() - Check if an object is of class 'metapred'
-
is_min_cstat_set() - Check if pars$min.cstat is set and valid
-
logLik(<riley>) - Print the log-likelihood
-
logit() - Apply logit tranformation
-
ma() - Random effects meta-analysis
-
metamisc-package - Meta-Analysis of Diagnosis and Prognosis Research Studies
-
metapred() - Generalized Stepwise Regression for Prediction Models in Clustered Data
-
oecalc() - Calculate the total O:E ratio
-
perf()performance() - Performance estimates
-
plot(<fat>) - Display results from the funnel plot asymmetry test
-
plot(<mm_perf>) - Forest Plots
-
plot(<riley>) - Plot the summary of the bivariate model from Riley et al. (2008).
-
plot(<uvmeta>) - Forest Plots
-
plot(<valmeta>) - Forest Plots
-
predict(<riley>) - Prediction Interval
-
recalibrate() - Recalibrate a Prediction Model
-
riley() - Fit the alternative model for bivariate random-effects meta-analysis
-
rmplot() - Plot the running means of a Bayesian meta-analysis model
-
rmplot(<mcmc.list>) - Plot the running means of a Bayesian meta-analysis model
-
rmplot(<uvmeta>) - Plot the running means of a Bayesian meta-analysis model
-
rmplot(<valmeta>) - Plot the running means of a Bayesian meta-analysis model
-
se()variances()tau()tau2() - Standard errors and variances
-
stackedglm() - Stacked Regression
-
subset(<metapred>) - Subsetting metapred fits
-
summary(<riley>) - Parameter summaries Provides the summary estimates of the alternative model for bivariate random-effects meta-analysis by Riley et al. (2008) with their corresponding standard errors (derived from the inverse Hessian). For confidence intervals, asymptotic normality is assumed.
-
summary(<uvmeta>) - Summarizing Univariate Meta-Analysis Models
-
uvmeta-clas - Class "uvmeta". Result of a univariate meta-analysis.
-
uvmeta() - Univariate meta-analysis
-
valmeta() - Meta-analysis of prediction model performance
-
vcov(<riley>) - Calculate Variance-Covariance Matrix for a Fitted Riley Model Object