Function reference
-
Collins
- Collins data
-
DVTipd
- Hypothetical dataset for diagnosis of Deep Vein Thrombosis (DVT)
-
DVTmodels
- Risk prediction models for diagnosing Deep Venous Thrombosis (DVT)
-
Daniels
- Daniels and Hughes data
-
EuroSCORE
- Predictive performance of EuroSCORE II
-
Fibrinogen
- Meta-analysis of the association between plasma fibrinogen concentration and the risk of coronary heath disease
-
Framingham
- Predictive performance of the Framingham Risk Score in male populations
-
Kertai
- Kertai data
-
Roberts
- Roberts data
-
Scheidler
- Diagnostic accuracy data
-
Tzoulaki
- The incremental value of cardiovascular risk factors
-
Zhang
- Meta-analysis of the prognostic role of hormone receptors in endometrial cancer
-
acplot()
- Plot the autocorrelation of a Bayesian meta-analysis model
-
acplot(<mcmc.list>)
- Plot the autocorrelation of a Bayesian meta-analysis model
-
acplot(<uvmeta>)
- Plot the autocorrelation of a Bayesian meta-analysis model
-
acplot(<valmeta>)
- Plot the autocorrelation of a Bayesian meta-analysis model
-
ccalc()
- Calculate the concordance statistic
-
cor2cov()
- Convert a correlation matrix into a covariance matrix
-
dplot()
- Posterior distribution of estimated model parameters
-
dplot(<mcmc.list>)
- Posterior distribution of estimated model parameters
-
dplot(<uvmeta>)
- Plot the prior and posterior distribution of a meta-analysis model
-
dplot(<valmeta>)
- Plot the prior and posterior distribution of a meta-analysis model
-
fat()
- Regression tests for detecting funnel plot asymmetry
-
fitted(<metapred>)
- Extract Model Fitted Values
-
forest()
- Forest plot
-
forest(<default>)
- Forest plot
-
forest(<metapred>)
- Forest plot of a metapred fit
-
forest(<mp.cv.val>)
- Forest plot of a validation object.
-
gelmanplot()
- Gelman-Rubin-Brooks plot
-
gelmanplot(<mcmc.list>)
- Gelman-Rubin-Brooks plot
-
gelmanplot(<uvmeta>)
- Gelman-Rubin-Brooks plot
-
gelmanplot(<valmeta>)
- Gelman-Rubin-Brooks plot
-
gen()
generalizability()
- Generalizability estimates
-
impact
- IMPACT data
-
impute_conditional_mean()
- Impute missing values by their conditional mean
-
inv.logit()
- Apply the inverse logit tranformation
-
logLik(<riley>)
- Print the log-likelihood
-
logit()
- Apply logit tranformation
-
ma()
- Random effects meta-analysis
-
metamisc-package
- Meta-Analysis of Diagnosis and Prognosis Research Studies
-
metapred()
- Generalized Stepwise Regression for Prediction Models in Clustered Data
-
oecalc()
- Calculate the total O:E ratio
-
perf()
performance()
- Performance estimates
-
plot(<fat>)
- Display results from the funnel plot asymmetry test
-
plot(<mm_perf>)
- Forest Plots
-
plot(<riley>)
- Plot the summary of the bivariate model from Riley et al. (2008).
-
plot(<uvmeta>)
- Forest Plots
-
plot(<valmeta>)
- Forest Plots
-
predict(<riley>)
- Prediction Interval
-
recalibrate()
- Recalibrate a Prediction Model
-
riley()
- Fit the alternative model for bivariate random-effects meta-analysis
-
rmplot()
- Plot the running means of a Bayesian meta-analysis model
-
rmplot(<mcmc.list>)
- Plot the running means of a Bayesian meta-analysis model
-
rmplot(<uvmeta>)
- Plot the running means of a Bayesian meta-analysis model
-
rmplot(<valmeta>)
- Plot the running means of a Bayesian meta-analysis model
-
se()
variances()
tau()
tau2()
- Standard errors and variances
-
stackedglm()
- Stacked Regression
-
subset(<metapred>)
- Subsetting metapred fits
-
summary(<riley>)
- Parameter summaries Provides the summary estimates of the alternative model for bivariate random-effects meta-analysis by Riley et al. (2008) with their corresponding standard errors (derived from the inverse Hessian). For confidence intervals, asymptotic normality is assumed.
-
summary(<uvmeta>)
- Summarizing Univariate Meta-Analysis Models
-
uvmeta-clas
- Class "uvmeta". Result of a univariate meta-analysis.
-
uvmeta()
- Univariate meta-analysis
-
valmeta()
- Meta-analysis of prediction model performance
-
vcov(<riley>)
- Calculate Variance-Covariance Matrix for a Fitted Riley Model Object