Skip to contents

All functions

Collins
Collins data
DVTipd
Hypothetical dataset for diagnosis of Deep Vein Thrombosis (DVT)
DVTmodels
Risk prediction models for diagnosing Deep Venous Thrombosis (DVT)
Daniels
Daniels and Hughes data
EuroSCORE
Predictive performance of EuroSCORE II
Fibrinogen
Meta-analysis of the association between plasma fibrinogen concentration and the risk of coronary heath disease
Framingham
Predictive performance of the Framingham Risk Score in male populations
Kertai
Kertai data
Roberts
Roberts data
Scheidler
Diagnostic accuracy data
Tzoulaki
The incremental value of cardiovascular risk factors
Zhang
Meta-analysis of the prognostic role of hormone receptors in endometrial cancer
acplot()
Plot the autocorrelation of a Bayesian meta-analysis model
acplot(<mcmc.list>)
Plot the autocorrelation of a Bayesian meta-analysis model
acplot(<uvmeta>)
Plot the autocorrelation of a Bayesian meta-analysis model
acplot(<valmeta>)
Plot the autocorrelation of a Bayesian meta-analysis model
ccalc()
Calculate the concordance statistic
cor2cov()
Convert a correlation matrix into a covariance matrix
dplot()
Posterior distribution of estimated model parameters
dplot(<mcmc.list>)
Posterior distribution of estimated model parameters
dplot(<uvmeta>)
Plot the prior and posterior distribution of a meta-analysis model
dplot(<valmeta>)
Plot the prior and posterior distribution of a meta-analysis model
fat()
Regression tests for detecting funnel plot asymmetry
fitted(<metapred>)
Extract Model Fitted Values
forest()
Forest plot
forest(<default>)
Forest plot
forest(<metapred>)
Forest plot of a metapred fit
forest(<mp.cv.val>)
Forest plot of a validation object.
gelmanplot()
Gelman-Rubin-Brooks plot
gelmanplot(<mcmc.list>)
Gelman-Rubin-Brooks plot
gelmanplot(<uvmeta>)
Gelman-Rubin-Brooks plot
gelmanplot(<valmeta>)
Gelman-Rubin-Brooks plot
gen() generalizability()
Generalizability estimates
impact
IMPACT data
impute_conditional_mean()
Impute missing values by their conditional mean
inv.logit()
Apply the inverse logit tranformation
logLik(<riley>)
Print the log-likelihood
logit()
Apply logit tranformation
ma()
Random effects meta-analysis
metamisc-package
Meta-Analysis of Diagnosis and Prognosis Research Studies
metapred()
Generalized Stepwise Regression for Prediction Models in Clustered Data
oecalc()
Calculate the total O:E ratio
perf() performance()
Performance estimates
plot(<fat>)
Display results from the funnel plot asymmetry test
plot(<mm_perf>)
Forest Plots
plot(<riley>)
Plot the summary of the bivariate model from Riley et al. (2008).
plot(<uvmeta>)
Forest Plots
plot(<valmeta>)
Forest Plots
predict(<riley>)
Prediction Interval
recalibrate()
Recalibrate a Prediction Model
riley()
Fit the alternative model for bivariate random-effects meta-analysis
rmplot()
Plot the running means of a Bayesian meta-analysis model
rmplot(<mcmc.list>)
Plot the running means of a Bayesian meta-analysis model
rmplot(<uvmeta>)
Plot the running means of a Bayesian meta-analysis model
rmplot(<valmeta>)
Plot the running means of a Bayesian meta-analysis model
se() variances() tau() tau2()
Standard errors and variances
stackedglm()
Stacked Regression
subset(<metapred>)
Subsetting metapred fits
summary(<riley>)
Parameter summaries Provides the summary estimates of the alternative model for bivariate random-effects meta-analysis by Riley et al. (2008) with their corresponding standard errors (derived from the inverse Hessian). For confidence intervals, asymptotic normality is assumed.
summary(<uvmeta>)
Summarizing Univariate Meta-Analysis Models
uvmeta-clas
Class "uvmeta". Result of a univariate meta-analysis.
uvmeta()
Univariate meta-analysis
valmeta()
Meta-analysis of prediction model performance
vcov(<riley>)
Calculate Variance-Covariance Matrix for a Fitted Riley Model Object