Plot the prior and posterior distribution of a meta-analysis model
Source:R/valmeta.r
dplot.valmeta.Rd
Function to generate plots for the prior and posterior distribution of a Bayesian meta-analysis.
Usage
# S3 method for valmeta
dplot(x, par, distr_type, plot_type = "dens", ...)
Arguments
- x
An object of class
"valmeta"
- par
Character string to specify for which parameter a plot should be generated. Options are
"mu"
(mean of the random effects model) and"tau"
(standard deviation of the random effects model).- distr_type
Character string to specify whether the prior distribution (
"prior"
) or posterior distribution ("posterior"
) should be displayed.- plot_type
Character string to specify whether a density plot (
"dens"
) or histogram ("hist"
) should be displayed.- ...
Additional arguments which are currently not used
Examples
if (FALSE) {
data(EuroSCORE)
# Meta-analysis of the concordance statistic
fit <- valmeta(cstat=c.index, cstat.se=se.c.index, cstat.cilb=c.index.95CIl,
cstat.ciub=c.index.95CIu, N=n, O=n.events,
data=EuroSCORE, method="BAYES", slab=Study)
dplot(fit)
dplot(fit, distr_type = "posterior")
dplot(fit, par = "tau", distr_type = "prior")
# Meta-analysis of the O:E ratio
EuroSCORE.new <- EuroSCORE
EuroSCORE.new$n[c(1, 2, 5, 10, 20)] <- NA
pars <- list(hp.tau.dist="dhalft", # Prior for the between-study standard deviation
hp.tau.sigma=1.5, # Standard deviation for 'hp.tau.dist'
hp.tau.df=3, # Degrees of freedom for 'hp.tau.dist'
hp.tau.max=10) # Maximum value for the between-study standard deviation
fit2 <- valmeta(measure="OE", O=n.events, E=e.events, N=n, data=EuroSCORE.new,
method="BAYES", slab=Study, pars=pars)
dplot(fit2, plot_type = "hist")
}