Hypothetical dataset for diagnosis of Deep Vein Thrombosis (DVT)
DVTipd.Rd
A hypothetical dataset with 500 subjects suspected of having deep vein thrombosis (DVT).
Usage
data(DVTipd)
Format
A data frame with 500 observations of 16 variables.
sex
gender (0=female, 1=male)
malign
active malignancy (0=no active malignancy, 1=active malignancy)
par
paresis (0=no paresis, 1=paresis)
surg
recent surgery or bedridden
tend
tenderness venous system
oachst
oral contraceptives or hst
leg
entire leg swollen
notraum
absence of leg trauma
calfdif3
calf difference >= 3 cm
pit
pitting edema
vein
vein distension
altdiagn
alternative diagnosis present
histdvt
history of previous DVT
ddimdich
dichotimized D-dimer value
dvt
final diagnosis of DVT
study
study indicator
Details
Hypothetical dataset derived from the Individual Participant Data Meta-Analysis from Geersing et al (2014). The dataset consists of consecutive outpatients with suspected deep vein thrombosis, with documented information on the presence or absence of proximal deep vein thrombosis (dvt
) by an acceptable reference test. Acceptable such tests were either compression ultrasonography or venography at initial presentation, or, if venous imaging was not performed, an uneventful follow-up for at least three months.
Source
Geersing GJ, Zuithoff NPA, Kearon C, Anderson DR, Ten Cate-Hoek AJ, Elf JL, et al. Exclusion of deep vein thrombosis using the Wells rule in clinically important subgroups: individual patient data meta-analysis. BMJ. 2014;348:g1340.
Examples
data(DVTipd)
str(DVTipd)
#> 'data.frame': 500 obs. of 16 variables:
#> $ sex : num 0 1 0 1 0 0 1 0 1 0 ...
#> $ malign : num 0 0 0 0 0 0 0 0 0 0 ...
#> $ par : num 0 0 1 0 0 0 0 0 0 0 ...
#> $ surg : num 0 0 0 0 0 0 0 0 1 0 ...
#> $ tend : num 1 1 0 1 1 0 0 1 1 1 ...
#> $ oachst : num 0 0 0 0 0 0 0 0 0 0 ...
#> $ leg : num 1 0 0 0 0 1 1 0 0 0 ...
#> $ notraum : num 1 1 1 1 1 0 0 1 0 1 ...
#> $ calfdif3: num 0 0 0 0 0 0 0 0 0 0 ...
#> $ pit : num 0 0 0 0 0 1 0 1 1 1 ...
#> $ vein : num 0 0 0 0 1 0 0 0 0 1 ...
#> $ altdiagn: num 1 0 1 1 1 0 1 1 1 1 ...
#> $ histdvt : num 0 1 0 0 0 0 1 0 0 0 ...
#> $ ddimdich: num 1 0 0 0 0 1 1 0 1 1 ...
#> $ dvt : num 0 0 0 0 0 0 0 0 0 0 ...
#> $ study : Factor w/ 4 levels "a","b","c","d": 1 4 1 4 1 4 4 4 4 2 ...
summary(apply(DVTipd,2,as.factor))
#> sex malign par surg
#> Length:500 Length:500 Length:500 Length:500
#> Class :character Class :character Class :character Class :character
#> Mode :character Mode :character Mode :character Mode :character
#> tend oachst leg notraum
#> Length:500 Length:500 Length:500 Length:500
#> Class :character Class :character Class :character Class :character
#> Mode :character Mode :character Mode :character Mode :character
#> calfdif3 pit vein altdiagn
#> Length:500 Length:500 Length:500 Length:500
#> Class :character Class :character Class :character Class :character
#> Mode :character Mode :character Mode :character Mode :character
#> histdvt ddimdich dvt study
#> Length:500 Length:500 Length:500 Length:500
#> Class :character Class :character Class :character Class :character
#> Mode :character Mode :character Mode :character Mode :character
## Develop a prediction model to predict presence of DVT
model.dvt <- glm("dvt~sex+oachst+malign+surg+notraum+vein+calfdif3+ddimdich",
family=binomial, data=DVTipd)
summary(model.dvt)
#>
#> Call:
#> glm(formula = "dvt~sex+oachst+malign+surg+notraum+vein+calfdif3+ddimdich",
#> family = binomial, data = DVTipd)
#>
#> Coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -5.1664 0.6365 -8.117 4.76e-16 ***
#> sex 0.8146 0.2825 2.883 0.00393 **
#> oachst 0.4324 0.6227 0.694 0.48739
#> malign 0.5679 0.4025 1.411 0.15826
#> surg 0.1002 0.4111 0.244 0.80734
#> notraum 0.3351 0.3700 0.906 0.36513
#> vein 0.4831 0.3186 1.516 0.12939
#> calfdif3 1.1841 0.2819 4.200 2.67e-05 ***
#> ddimdich 2.6081 0.5310 4.911 9.04e-07 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> (Dispersion parameter for binomial family taken to be 1)
#>
#> Null deviance: 446.24 on 499 degrees of freedom
#> Residual deviance: 345.98 on 491 degrees of freedom
#> AIC: 363.98
#>
#> Number of Fisher Scoring iterations: 6
#>