
Estimate the CATE model using specified scoring methods for survival outcomes
Source:R/CATE_surv.R
intxsurv.RdCoefficients of the CATE estimated with random forest, boosting, naive Poisson, two regression, and contrast regression
Usage
intxsurv(
y,
d,
trt,
x.cate,
x.ps,
x.ipcw,
yf = NULL,
tau0,
surv.min = 0.025,
score.method = c("randomForest", "boosting", "poisson", "twoReg", "contrastReg"),
ps.method = "glm",
minPS = 0.01,
maxPS = 0.99,
ipcw.method = "breslow",
initial.predictor.method = "randomForest",
tree.depth = 3,
n.trees.rf = 1000,
n.trees.boosting = 150,
B = 3,
Kfold = 5,
plot.gbmperf = TRUE,
error.maxNR = 0.001,
max.iterNR = 100,
tune = c(0.5, 2),
...
)Arguments
- y
Observed survival or censoring time; vector of size
n.- d
The event indicator, normally
1 = event, 0 = censored; vector of sizen.- trt
Treatment received; vector of size
nwith treatment coded as 0/1.- x.cate
Matrix of
p.catebaseline covariates specified in the outcome model; dimensionnbyp.cate.- x.ps
Matrix of
p.psbaseline covariates specified in the propensity score model; dimensionnbyp.ps.- x.ipcw
Matrix of
p.ipwbaseline covariate specified in inverse probability of censoring weighting; dimensionnbyp.ipw.- yf
Follow-up time, interpreted as the potential censoring time; vector of size
nif the potential censoring time is known.- tau0
The truncation time for defining restricted mean time lost.
- surv.min
Lower truncation limit for probability of being censored (positive and very close to 0).
- score.method
A vector of one or multiple methods to estimate the CATE score. Allowed values are:
'randomForest','boosting','poisson','twoReg','contrastReg'. Default specifies all 5 methods.- ps.method
A character vector for the method to estimate the propensity score. Allowed values include one of:
'glm'for logistic regression with main effects only (default), or'lasso'for a logistic regression with main effects and LASSO penalization on two-way interactions (added to the model if interactions are not specified inps.model). Relevant only whenps.modelhas more than one variable.- minPS
A numerical value (in `[0, 1]`) below which estimated propensity scores should be truncated. Default is
0.01.- maxPS
A number above which estimated propensity scores should be trimmed; scalar
- ipcw.method
The censoring model. Allowed values are:
'breslow'(Cox regression with Breslow estimator of the baseline survivor function),'aft (exponential)','aft (weibull)','aft (lognormal)'or'aft (loglogistic)'. Default is'breslow'.- initial.predictor.method
A character vector for the method used to get initial outcome predictions conditional on the covariates in
cate.modelinscore.method = 'twoReg'and'contrastReg'. Allowed values include one of'randomForest','boosting'and'logistic'(fastest). Default is'randomForest'.- tree.depth
A positive integer specifying the depth of individual trees in boosting (usually 2-3). Used only if
score.method = 'boosting'or ifscore.method = 'twoReg'or'contrastReg'andinitial.predictor.method = 'boosting'. Default is3.- n.trees.rf
A positive integer specifying the maximum number of trees in random forest. Used if
score.method = 'ranfomForest'or ifinitial.predictor.method = 'randomForest'withscore.method = 'twoReg'or'contrastReg'. Default is1000.- n.trees.boosting
A positive integer specifying the maximum number of trees in boosting (usually 100-1000). Used if
score.method = 'boosting'or ifinitial.predictor.method = 'boosting'withscore.method = 'twoReg'or'contrastReg'. Default is150.- B
A positive integer specifying the number of time cross-fitting is repeated in
score.method = 'twoReg'and'contrastReg'. Default is3.- Kfold
A positive integer specifying the number of folds (parts) used in cross-fitting to partition the data in
score.method = 'twoReg'and'contrastReg'. Default is5.- plot.gbmperf
A logical value indicating whether to plot the performance measures in boosting. Used only if
score.method = 'boosting'or ifscore.method = 'twoReg'or'contrastReg'andinitial.predictor.method = 'boosting'. Default isTRUE.- error.maxNR
A numerical value > 0 indicating the minimum value of the mean absolute error in Newton Raphson algorithm. Used only if
score.method = 'contrastReg'. Default is0.001.- max.iterNR
A positive integer indicating the maximum number of iterations in the Newton Raphson algorithm. Used only if
score.method = 'contrastReg'. Default is100.- tune
A vector of 2 numerical values > 0 specifying tuning parameters for the Newton Raphson algorithm.
tune[1]is the step size,tune[2]specifies a quantity to be added to diagonal of the slope matrix to prevent singularity. Used only ifscore.method = 'contrastReg'. Default isc(0.5, 2).- ...
Additional arguments for
gbm()
Value
Depending on what score.method is, the outputs is a combination of the following:
result.randomForest: Results of random forest fit, for trt = 0 and trt = 1 separately
result.boosting: Results of boosting fit, for trt = 0 and trt = 1 separately
result.poisson: Naive Poisson estimator (beta1 - beta0); vector of length p.cate + 1
result.twoReg: Two regression estimator (beta1 - beta0); vector of length p.cate + 1
result.contrastReg: A list of the contrast regression results with 2 elements:
$delta.contrastReg: Contrast regression DR estimator; vector of length p.cate + 1
$converge.contrastReg: Indicator that the Newton Raphson algorithm converged for delta_0; boolean