Coefficients of the CATE estimated with boosting, linear regression, two regression, contrast regression, random forest, generalized additive model
Usage
intxmean(
  y,
  trt,
  x.cate,
  x.init,
  x.ps,
  score.method = c("boosting", "gaussian", "twoReg", "contrastReg", "gam",
    "randomForest"),
  ps.method = "glm",
  minPS = 0.01,
  maxPS = 0.99,
  initial.predictor.method = "boosting",
  xvar.smooth.init,
  xvar.smooth.score,
  tree.depth = 2,
  n.trees.rf = 1000,
  n.trees.boosting = 200,
  B = 1,
  Kfold = 2,
  plot.gbmperf = TRUE,
  ...
)Arguments
- y
- Observed outcome; vector of size - n(observations)
- trt
- Treatment received; vector of size - nunits with treatment coded as 0/1
- x.cate
- Matrix of - p.catebaseline covariates; dimension- nby- p.cate(covariates in the outcome model)
- x.init
- Matrix of - p.initbaseline covariates; dimension- nby- p.initIt must be specified when- score.method = contrastRegor- twoReg.
- x.ps
- Matrix of - p.psbaseline covariates (plus a leading column of 1 for the intercept); dimension- nby- p.ps + 1(covariates in the propensity score model plus intercept)
- score.method
- A vector of one or multiple methods to estimate the CATE score. Allowed values are: - 'boosting',- 'gaussian',- 'twoReg',- 'contrastReg',- 'randomForest',- 'gam'. Default specifies all 6 methods.
- ps.method
- A character value for the method to estimate the propensity score. Allowed values include one of: - 'glm'for logistic regression with main effects only (default), or- 'lasso'for a logistic regression with main effects and LASSO penalization on two-way interactions (added to the model if interactions are not specified in- ps.model). Relevant only when- ps.modelhas more than one variable.
- minPS
- A numerical value (in `[0, 1]`) below which estimated propensity scores should be truncated. Default is - 0.01.
- maxPS
- A number above which estimated propensity scores should be trimmed; scalar 
- initial.predictor.method
- A character vector for the method used to get initial outcome predictions conditional on the covariates in - cate.modelin- score.method = 'twoReg'and- 'contrastReg'. Allowed values include one of- 'gaussian'(fastest),- 'boosting'(default) and- 'gam'.
- xvar.smooth.init
- A vector of characters indicating the name of the variables used as the smooth terms if - initial.predictor.method = 'gam'. The variables must be selected from the variables listed in- init.model. Default is- NULL, which uses all variables in- init.model.
- xvar.smooth.score
- A vector of characters indicating the name of the variables used as the smooth terms if - score.method = 'gam'. The variables must be selected from the variables listed in- cate.model. Default is- NULL, which uses all variables in- cate.model.
- tree.depth
- A positive integer specifying the depth of individual trees in boosting (usually 2-3). Used only if - score.method = 'boosting'or if- score.method = 'twoReg'or- 'contrastReg'and- initial.predictor.method = 'boosting'. Default is- 2.
- n.trees.rf
- A positive integer specifying the number of trees. Used only if - score.method = 'randomForest'. Default is- 1000.
- n.trees.boosting
- A positive integer specifying the maximum number of trees in boosting (usually 100-1000). Used only if - score.method = 'boosting'or if- score.method = 'twoReg'or- 'contrastReg'and- initial.predictor.method = 'boosting'. Default is- 200.
- B
- A positive integer specifying the number of time cross-fitting is repeated in - score.method = 'twoReg'and- 'contrastReg'. Default is- 3.
- Kfold
- A positive integer specifying the number of folds (parts) used in cross-fitting to partition the data in - score.method = 'twoReg'and- 'contrastReg'. Default is- 6.
- plot.gbmperf
- A logical value indicating whether to plot the performance measures in boosting. Used only if - score.method = 'boosting'or if- score.method = 'twoReg'or- 'contrastReg'and- initial.predictor.method = 'boosting'. Default is- TRUE.
- ...
- Additional arguments for - gbm()
Value
Depending on what score.method is, the outputs is a combination of the following:
          result.boosting: Results of boosting fit and best iteration, for trt = 0 and trt = 1 separately
          result.gaussian: Linear regression estimator (beta1 - beta0); vector of length p.cate + 1
          result.twoReg: Two regression estimator (beta1 - beta0); vector of length p.cate + 1
          result.contrastReg: A list of the contrast regression results with 3 elements:
              $delta.contrastReg: Contrast regression DR estimator; vector of length p.cate + 1
              $sigma.contrastReg: Variance covariance matrix for delta.contrastReg; matrix of size p.cate + 1 by p.cate + 1
          result.randomForest: Results of random forest fit and best iteration, for trt = 0 and trt = 1 separately
          result.gam: Results of generalized additive model fit and best iteration, for trt = 0 and trt = 1 separately
          best.iter: Largest best iterations for boosting (if used)
          fgam: Formula applied in GAM when initial.predictor.method = 'gam'
          warn.fit: Warnings occurred when fitting score.method
          err.fit:: Errors occurred when fitting score.method
