Coefficients of the CATE estimated with boosting, naive Poisson, two regression, contrast regression, negative binomial
Usage
intxcount(
  y,
  trt,
  x.cate,
  x.ps,
  time,
  score.method = c("boosting", "poisson", "twoReg", "contrastReg", "negBin"),
  ps.method = "glm",
  minPS = 0.01,
  maxPS = 0.99,
  initial.predictor.method = "boosting",
  xvar.smooth = NULL,
  tree.depth = 2,
  n.trees.boosting = 200,
  B = 3,
  Kfold = 6,
  plot.gbmperf = TRUE,
  error.maxNR = 0.001,
  max.iterNR = 150,
  tune = c(0.5, 2),
  ...
)Arguments
- y
 Observed outcome; vector of size
n(observations)- trt
 Treatment received; vector of size
nunits with treatment coded as 0/1- x.cate
 Matrix of
p.catebaseline covariates; dimensionnbyp.cate(covariates in the outcome model)- x.ps
 Matrix of
p.psbaseline covariates (plus a leading column of 1 for the intercept); dimensionnbyp.ps + 1(covariates in the propensity score model plus intercept)- time
 Log-transformed person-years of follow-up; vector of size
n- score.method
 A vector of one or multiple methods to estimate the CATE score. Allowed values are:
'boosting','poisson','twoReg','contrastReg','negBin'. Default specifies all 5 methods.- ps.method
 A character value for the method to estimate the propensity score. Allowed values include one of:
'glm'for logistic regression with main effects only (default), or'lasso'for a logistic regression with main effects and LASSO penalization on two-way interactions (added to the model if interactions are not specified inps.model). Relevant only whenps.modelhas more than one variable.- minPS
 A numerical value (in `[0, 1]`) below which estimated propensity scores should be truncated. Default is
0.01.- maxPS
 A number above which estimated propensity scores should be trimmed; scalar
- initial.predictor.method
 A character vector for the method used to get initial outcome predictions conditional on the covariates in
cate.modelinscore.method = 'twoReg'and'contrastReg'. Allowed values include one of'poisson'(fastest),'boosting'(default) and'gam'.- xvar.smooth
 A vector of characters indicating the name of the variables used as the smooth terms if
initial.predictor.method = 'gam'. The variables must be selected from the variables listed incate.model. Default isNULL, which uses all variables incate.model.- tree.depth
 A positive integer specifying the depth of individual trees in boosting (usually 2-3). Used only if
score.method = 'boosting'or ifscore.method = 'twoReg'or'contrastReg'andinitial.predictor.method = 'boosting'. Default is2.- n.trees.boosting
 A positive integer specifying the maximum number of trees in boosting (usually 100-1000). Used only if
score.method = 'boosting'or ifscore.method = 'twoReg'or'contrastReg'andinitial.predictor.method = 'boosting'. Default is200.- B
 A positive integer specifying the number of time cross-fitting is repeated in
score.method = 'twoReg'and'contrastReg'. Default is3.- Kfold
 A positive integer specifying the number of folds (parts) used in cross-fitting to partition the data in
score.method = 'twoReg'and'contrastReg'. Default is6.- plot.gbmperf
 A logical value indicating whether to plot the performance measures in boosting. Used only if
score.method = 'boosting'or ifscore.method = 'twoReg'or'contrastReg'andinitial.predictor.method = 'boosting'. Default isTRUE.- error.maxNR
 A numerical value > 0 indicating the minimum value of the mean absolute error in Newton Raphson algorithm. Used only if
score.method = 'contrastReg'. Default is0.001.- max.iterNR
 A positive integer indicating the maximum number of iterations in the Newton Raphson algorithm. Used only if
score.method = 'contrastReg'. Default is150.- tune
 A vector of 2 numerical values > 0 specifying tuning parameters for the Newton Raphson algorithm.
tune[1]is the step size,tune[2]specifies a quantity to be added to diagonal of the slope matrix to prevent singularity. Used only ifscore.method = 'contrastReg'. Default isc(0.5, 2).- ...
 Additional arguments for
gbm()
Value
Depending on what score.method is, the outputs is a combination of the following:
          result.boosting: Results of boosting fit and best iteration, for trt = 0 and trt = 1 separately
          result.poisson: Naive Poisson estimator (beta1 - beta0); vector of length p.cate + 1
          result.twoReg: Two regression estimator (beta1 - beta0); vector of length p.cate + 1
          result.contrastReg: A list of the contrast regression results with 3 elements:
              $delta.contrastReg: Contrast regression DR estimator; vector of length p.cate + 1
              $sigma.contrastReg: Variance covariance matrix for delta.contrastReg; matrix of size p.cate + 1 by p.cate + 1
              $converge.contrastReg: Indicator that the Newton Raphson algorithm converged for delta_0; boolean
          result.negBin: Negative binomial estimator (beta1 - beta0); vector of length p.cate + 1
          best.iter: Largest best iterations for boosting (if used)
          fgam: Formula applied in GAM (if used)
